TIEPolylineLayer.InsertCurvePoints
Declaration
procedure InsertCurvePoints(AfterIndex: Integer; RadiusMult: Double; PtCount: Integer = 0);
Description
Add points between
AfterIndex and
AfterIndex+1 in a curve.
Parameter | Description |
AfterIndex | The index of the point prior to the insertion. It must be in the range 0 - PointCount - 2 |
RadiusMult | Specify a multiplier to increase or decrease the radius of the curve. 1: Creates a curve of an exact half circle. >1 creates a shallower curve. <1 creates a bulging curve. Pass as negative to make sweep clockwise |
PtCount | The number of points to insert (if zero, it is calculated based on LayerCurveQuality) |
// Insert a half circle curving downward between points 5 and 6
TIEPolylineLayer( ImageEnView1.CurrentLayer ).AddPoint( 0, 500 );
TIEPolylineLayer( ImageEnView1.CurrentLayer ).InsertCurvePoints( 5, 1, 20 );
ImageEnView1.Update();
// Insert a half circle curving upward between points 5 and 6
TIEPolylineLayer( ImageEnView1.CurrentLayer ).AddPoint( 0, 500 );
TIEPolylineLayer( ImageEnView1.CurrentLayer ).InsertCurvePoints( 5, -1, 20 );
ImageEnView1.Update();
// Insert a shallow smiley face between points 5 and 6
TIEPolylineLayer( ImageEnView1.CurrentLayer ).AddPoint( 0, 500 );
TIEPolylineLayer( ImageEnView1.CurrentLayer ).InsertCurvePoints( 5, 3, 20 );
ImageEnView1.Update();
// Insert a shallow sad face between points 5 and 6
TIEPolylineLayer( ImageEnView1.CurrentLayer ).AddPoint( 0, 500 );
TIEPolylineLayer( ImageEnView1.CurrentLayer ).InsertCurvePoints( 5, -3, 20 );
ImageEnView1.Update();
// Insert a bulging curve downward between points 5 and 6
TIEPolylineLayer( ImageEnView1.CurrentLayer ).AddPoint( 0, 500 );
TIEPolylineLayer( ImageEnView1.CurrentLayer ).InsertCurvePoints( 5, 0.5, 20 );
ImageEnView1.Update();
// Insert a bulging curve upward between points 5 and 6
TIEPolylineLayer( ImageEnView1.CurrentLayer ).AddPoint( 0, 500 );
TIEPolylineLayer( ImageEnView1.CurrentLayer ).InsertCurvePoints( 5, 0.5, 20 );
ImageEnView1.Update();
See Also
◼AddCurvePoints◼AddPoint◼Points